Welcome to Chinese Journal of Ecology! Today is Share:

cje

Previous Articles     Next Articles

Rhizome dynamics and age structure of Phragmites australis population in heterogeneous habitats in Zhalong Wetland.

JIAO De-zhi1,2, HUANG Zhao-yue1, ZHOU Chan3, YANG Yun-fei2*   

  1. (1College of Life Science and Agriculture, Forestry, Qiqihar University, Qiqihar 161006, Heilongjiang, China; 2Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; 3School of Life Sciences, Liaoning University, Shenyang 100036, China)
  • Online:2016-04-10 Published:2016-04-10

Abstract: lonal plant rhizome not only has the function of vegetative propagation and population expansion, but also acts as the physiological channel between the integration of bud and ramets in clonal family. By sampling the soil from a unit area, a comparative study was performed on rhizome length, rhizome biomass and rhizome dry matter storage of Phragmites australis growing in wet and aquatic habitats. The results showed that P. australis population growing in wet habitat was significantly superior to the one growing in aquatic habitat. The rhizome length increased slowly before August, while increased rapidly after August, with 3rd rhizome the longest and the 6th rhizome the shortest. Rhizome biomass and rhizome dry matter storage decreased at the beginning but increased afterwards. Both of them were lowest in August, and then started to increase until the period of dormancy in October. By that time, the rhizome biomass was much greater than that in the early stage of vegetative growth, with 3rd rhizome the largest and 1st rhizome the least. Regarding dry matter storage, the 5th rhizome was the heaviest, while the 1st rhizome was the lightest. There was a linear correlation of the rhizome length and the age spectrum of different age classes with the growing months. Meanwhile, there was a quadratic function correlation between rhizome biomass of different age classes and growing months, a linear correlation between age spectrum of rhizome biomass and growing months, and a quadratic function correlation between rhizome dry matter storage in five growth periods and age classes. The similar seasonal patterns were observed on the growth of rhizomes length, rhizome biomass and rhizome dry matter storage of P. australis population. The lifetime of rhizome associated with different age classes had a close relationship to the consumption and input backoff of nutrients. The heterogeneous habitats had an effect on both rhizome dynamics and age structure of P. australis population in the entire growth period, and the difference was relatively stable.

Key words: tissue structure, Camellia sasanqua, leaf, stomatal