欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 研究报告 • 上一篇    下一篇

辽东低山区5种典型水源涵养林枯落物持水特性

杨霞,陈丽华*,康影丽,弓文艳,郑学良   

  1. (北京林业大学, 北京 100083)
  • 出版日期:2019-09-10 发布日期:2019-09-10

Water-holding characteristics of litter in five typical water conservation forests in low mountainous areas of eastern Liaoning.

YANG Xia, CHEN Li-hua*, KANG Ying-li, GONG Wen-yan, ZHENG Xue-liang   

  1. (Beijing Forestry University, Beijing 100083, China).
  • Online:2019-09-10 Published:2019-09-10

摘要: 对辽东低山区5种水源涵养林枯落物持水特性进行研究,可以为该区水源涵养林的营造、科学经营提供理论依据。2018年6月在辽宁省抚顺县国有温道林场选取纯林(落叶松林(Larix olgensis)、油松林(Pinus tabuliformis)、红松林(Pinus koraiensis)、刺槐林(Robinia pseudoacacia)和杂木林为研究对象,调查各林分枯落物厚度、蓄积量等,并用浸泡法测定最大持水量、最大持水率,建立持水量、吸水速率与浸水时间之间的关系。结果表明:(1)5种林分枯落物厚度3.6~7.8 cm,平均厚度6.2 cm;蓄积量15.40~50.38 t·hm-2,平均值30.42 t·hm-2。(2)枯落物最大持水量13.61~27.21 t·hm-2,大小排序为杂木林>落叶松林>刺槐林>红松林>油松林;最大持水率变化稍有不同,依次为刺槐林>落叶松林>杂木林>红松林>油松林。(3)枯落物有效拦蓄量19.60~142.67 t·hm-2,大小排序为落叶松林>红松林>杂木林>刺槐林>油松林。(4)回归分析表明,枯落物持水量与浸水时间符合关系式Q=alnt+b,相关系数R2均大于0.80;吸水速率与浸水时间符合关系式V=ctn,相关系数R2均大于0.99。综上,落叶松林、红松林枯落物蓄积量最大、持水能力和有效拦蓄能力均较强,刺槐林、杂木林次之,油松林较差。

关键词: 水生动物, 稳定同位素, 富集系数, 整合分析

Abstract: Understanding waterholding characteristics of litter of different water conservation forests in the low mountainous areas of eastern Liaoning can provide theoretical basis for construction and management of water conservation forests. In June 2018, we investigated the thickness and stock volume of litter in pure forests (Larix olgensis, Pinus tabuliformis, P. koraiensis, Robinia pseudoacacia) and a mixed forest in stateowned Wendao Forest Farm of Fushun County, Liaoning Province. The maximum waterholding capacity, maximum waterholding rate and other indices were measured by soaking method. The relationship between waterholding capacity, water absorption rate and soaking time of litter was established. The results showed that: (1) The thickness of litter layer in five stands ranged from 3.6 to 7.8 cm, with an average value of 6.2 cm. The stock volume of litter was between 15.40 and 50.38 t·hm-2, with an average value of 30.42 t·hm-2. (2) The maximum waterholding capacity was between 13.61 and 27.21 t·hm-2, with a rank of mixed forest>L. olgensisforest >R. pseudoacacia forest >P. koraiensis forest >P. tabuliformis forest. The maximum waterholding rate changed slightly, with the order of R. pseudoacacia forest >L. olgensisforest >mixed forest>P. koraiensis forest >P. tabuliformis forest. (3) The effective water storage capacity of litter was between 19.60 and 142.67 t·hm-2, with an order of L. olgensisforest >P. koraiensisforest >mixed forest>R. pseudoacaciaforest >P. tabuliformisforest. (4) The relationship between waterholding capacity and soaking time fitted well with equation as Q=alnt+b, with correlation coefficient (R2) greater than 0.80. The relationship between water absorption rate and soaking time followed equation as V=ctn, with R2 over 0.99. In conclusion, litter volume, waterholding capacity, and effective water storage capacity of L. olgensis forest and P. koraiensisforest were the highest, followed by R. pseudoacacia forest and mixed forest, P. tabuliformis forest was the worst.

Key words: aquatic animal, stable isotope, enrichment factor, metaanalysis.