欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 研究报告 • 上一篇    下一篇

氯离子对硫铁矿生物氧化的影响及所产废水体系生物成矿行为

乔星星1,董燕1,雷永胜1,周立祥2,刘奋武1*   

  1. (1山西农业大学资源环境学院环境工程实验室, 山西晋中 030801;2南京农业大学资源与环境科学学院环境工程系, 南京 210095)
  • 出版日期:2018-06-10 发布日期:2018-06-10

Effect of chloride ions on biological oxidation of pyrite and the biomineralization behavior in wastewater system.

QIAO Xing-xing1, DONG Yan1, LEI Yong-sheng1, ZHOU Li-xiang2, LIU Fen-wu1*   

  1. (1Environmental Engineering Laboratory, College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China; 2Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China).
  • Online:2018-06-10 Published:2018-06-10

摘要: 探究氯离子(Cl-)对硫铁矿生物氧化的影响有利于揭示酸性矿山废水(acid mine drainage,AMD)形成规律,进一步探索废水体系生物成矿特征对明确生物成矿对AMD产生的调控亦具有积极意义。本文采用摇瓶试验,在探究Cl-对硫铁矿生物氧化(生物氧化过程不补充微生物所需的液体培养基)影响的基础上,进一步考察了硫铁矿氧化所得酸性废水体系次生铁矿物的合成行为。结果表明:当体系Cl-浓度为8.2 mmol·L-1时,硫铁矿生物氧化速率相对于对照体系(无Cl-加入)无明显差异;当体系Cl-浓度为16.5 mmol·L-1时,一定程度上促进了硫铁矿的生物氧化;高浓度(49.4~65.8 mmol·L-1)Cl-对硫铁矿的生物氧化有显著的抑制作用。例如,初始Cl-浓度为0、8.2、16.5和65.8 mmol·L-1各处理,当硫铁矿生物氧化至68 d时,体系总Fe离子浓度分别为1204.56、1218.09、1431.50及796.48 mg·L-1。各处理生物氧化后的硫铁矿表面有明显的微生物侵蚀坑,而其表面却并没有观察到次生铁矿物的合成。各处理体系所得硫铁矿生物氧化后,54.3%~79.5%总Fe离子以Fe2+存在。将各处理体系过滤所得滤液再次培养,体系Fe2+被逐渐氧化完全,且体系有次生铁矿物(黄铁矾类物质)最终产生。可见,Cl-对硫铁矿生物氧化行为有一定的调控作用,且体系存在的Fe离子脱离硫铁矿体系,伴随着Fe2+被逐渐全部氧化为Fe3+,体系有次生铁矿物大量合成。本研究结果可为明晰酸性矿山废水形成及废水中次生铁矿物合成规律提供一定的参数支撑。

关键词: 出芽生殖, 大型水母, 横裂生殖, 足囊生殖

Abstract: Understanding the effects of chloride ions (Cl-) on the biooxidation of pyrite is beneficial for revealing the formation mechanism of acid mine drainage (AMD). Meanwhile, uncovering the biomineralization behavior in wastewater system has implication for clarifying the regulation of AMD production by biomineralization behavior. In this study, the effects of Cl- on the pyrite biooxidation were investigated (the liquid medium required for microorganism growth was notadded into systems). The synthetic behavior of secondary iron minerals in the wastewater system was examined through flask experiment. Results showed that there was no significant difference of pyrite biooxidation efficiency between the treatments without Cl- addition and with 8.2 mmol·L-1 of Cl- addition. The biooxidation efficiency of pyrite was promoted when the initial Cl- concentration was 16.5 mmol·L-1. The biooxidation efficiency of pyrite was significantly inhibited when the initial Cl- concentration reached 49.4-65.8 mmol·L-1. For example, the total Fe concentrations were 1204.56, 1218.09, 1431.50 and 796.48 mg·L-1 at day 68 when the initial concentrations of Cl- were 0, 8.2, 16.5, and 65.8 mmol·L-1, respectively. There were obvious microbial erosion pits on the surface of biooxidized pyrite in all treatments. However, no secondary iron minerals were observed on the surface of biooxidized pyrite. After the pyrite biological oxidation in different treatments, 54.3%-79.5% of total Fe ions mainly presented as Fe2+ type. The filtrate obtained by filtering in different treatments was cultured and the systems eventually produced secondary iron minerals (such as jarosite) when Fe2+ was gradually oxidized completely. Thus, Cl- concentrations played a role in regulating biological oxidation of pyrite. When the Fe ions are separated from the pyrite system and Fe2+ gradually are oxidized to Fe3+, a large amount of secondary iron minerals can be synthesized in systems. Our results provide theoretical support for clarifying the formation of AMD and the synthesis of secondary iron minerals in the AMD system.

Key words: large jellyfish, podocyst production., strobilation, budding