欢迎访问《生态学杂志》官方网站,今天是 分享到:

生态学杂志

• 研究报告 • 上一篇    下一篇

四种冬季水生植物组合对富营养化水体的净化效果

汪秀芳1,2**,许开平1,叶碎高1,薛淋淋3,刘贵华2,尤爱菊1,苏飞1   

  1. (1浙江省水利河口研究院,  杭州 310020; 2中国科学院武汉植物园水生植物与流域生态重点实验室, 武汉 430074; 3厦门大学生命科学学院生态研究所, 福建厦门 361005)
  • 出版日期:2013-02-10 发布日期:2013-02-10

Purification efficiency of four combinations of aquatic macrophytes on eutrophic water body in winter.

WANG Xiu-fang1,2**, XU Kai-ping1, YE Sui-gao1, XUE Lin-lin3, LIU Gui-hua2, YOU Ai-ju1, SU Fei1   

  1. (1Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China; 2Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; 3College of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China)
  • Online:2013-02-10 Published:2013-02-10

摘要: 选择10种耐低温的水生植物构建4种植物组合,研究了冬季低温环境下不同水生植物组合对富营养化水体的净化效果。结果表明:组合1〔常绿水生鸢尾(Iris hexagonus Hybrid)+羊蹄(Rumex japonicus)+金叶“金钱蒲”(Acorus gramineus “Ogan”)+反曲灯心草“蓝箭”(Juncus inflexus “Blue Arrows”)〕4种植物均能在试验富营养化水体中茂盛生长,且对TN、NOx-N、NH4-N和TP的去除率分别为47.8%、52.2%、32.4%和70.1%;组合2〔常绿水生鸢尾+羊蹄+金叶“金钱蒲”+大苞萱草(Hemerocallis middendorfii)〕4种植物也都能在试验富营养化水体中存活,并且有一定量的生长,对TN、NOx-N、NH4-N和TP的去除率分别为44.2%、58.5%、34.6%和67.8%;而未种植物的对照对TN、NOx-N、NH4-N和TP的去除率分别为40.0%、25.9%、27.3%和64.5%;组合1和2对富营养化水体有较好的净化效果。组合3和组合4中由于吊兰(Chlorophytum comosum)和三穗薹草(Carex tristachya)等植物长势较差,仅对NOx-N具有较明显去除能力,对其他指标去除效果不明显。通过这些水生植物在富营养化水体中生长特性和对营养元素的去除能力,发现冬季组合1和2的净化效果较好,是低温条件下适宜的浮床植物组合形式。

关键词: 棉田, 捕食性天敌, 群落动态

Abstract: Ten species of low temperature-tolerant aquatic macrophytes were chosen to construct four combinations of aquatic macrophytes to study their purification efficiency on eutrophic water body in winter. In non-macrophyte treatment (CK), the removal efficiency of water total nitrogen (TN), nitrite nitrogen (NOx-N), ammonium nitrogen (NH4-N), and total phosphorus (TP) was 40.0%, 25.9%, 27.3%, and 64.5%, respectively. Combination 1 (Iris hexagonus Hybrid + Rumex japonicas + Acorus gramineus “Ogan” + Juncus inflexus “Blue Arrows”) grew luxuriantly in the test eutrophic water body, and performed best in decreasing water TN, NOx-N, NH4-N, and TP, with the removal efficiency being 47.8%, 52.2%, 32.4%, and 70.1%, respectively. Combination 2 (I. hexagonus Hybrid + R. japonicas + A. gramineus “Ogan” + Hemerocallis middendorfii) could survive and had definite growth amount in the test eutrophic water, and the removal efficiency of water TN, NOx-N, NH4-N, and TP was 44.2%, 58.5%, 34.6% and 67.8%, respectively. In contrast, both the combination 3 (R. japonicas + Lolium perenne + Chlorophytum comosum + Juncus pallidus R. Br. “Javelin”) and the combination 4 (R. japonicas + L. perenne + C. comosum + Carex tristachya) only had an obvious efficiency in removing NOx-N but less efficiency in removing TN, NH4-N, and TP, due to the poor growth of C. comosum and C. tristachya. It was suggested that combinations 1 and 2 had better purification efficiency on eutrophic water body, being the suitable combination forms of aquatic macrophytes floatingbed under low temperature in winter.